Hình học 12 Ôn tập chương 2 Mặt nón, Mặt trụ, Mặt cầu | Tài liệu học tập và bài giảng online

Bạn đang cần tìm Hình học 12 Ôn tập chương 2 Mặt nón, Mặt trụ, Mặt cầu | Tài liệu học tập và bài giảng online? Mọi ý kiến đóng góp với giasubachkhoa tại mục liên hệ để cộng đồng có thêm nhiều bài giảng và bài tập hay. Cảm ơn các bạn luôn ủng hộ chúng tôi.

Bài viết này về: Hình học 12 Ôn tập chương 2 Mặt nón, Mặt trụ, Mặt cầu | Tài liệu học tập và bài giảng online

Nội dung chương Mặt Nón, Mặt Trụ, Mặt Cầu xoay quanh việc tính thể tích, diện tích của các vật thể tròn xoay dạng nón, trụ và hình cầu, những vật thể quen thuộc và khá phổ biến trong đời sống. Nội dung bài ôn tập chương sẽ giúp các em Tổng hợp lại kiến thức đã học, rèn luyện kĩ năng giải bài tập, giúp nâng cao chất lượng, hiệu quả học tập.

Xem thêm:  Hình học 12 Bài 1: Khái niệm về khối đa diện | Tài liệu học tập và bài giảng online

2.1. Các khái niệm cần nhớ

  • Mặt nón, hình nón, khối nón.
  • Mặt trụ, hình trụ, khối trụ.
  • Mặt cầu, khối cầu, vị trí tương đối giữa mặt cầu với đường thẳng, mặt phẳng.

a) Công thức tính diện tích và thể tích liên quan đến hình nón, khối nón

Cho hình nón có đường sinh (l), bán kính đáy (R), chiều cao (h), ta có các công thức sau:

  • Thể tích khối nón: (V_{Khoi , , non}=frac{1}{3}.S.h=frac{1}{3}.pi .R^{2}.h).
  • Diện tích xung quanh hình nón: (S_{xq}=pi Rl).
  • Diện tích toàn phần hình nón: (S_{tp}=pi Rl+pi R^{2}).

b) Các công thức tính toán liên quan đển hình trụ, khối trụ

  • Thể tích khối trụ: (V=pi .R^2.h) (=Sđáy.h).
  • Diện tích xung quanh hình trụ: (S_{xq}=2pi .R.h).
  • Diện tích toàn phân hình trụ: (S_{tp}=2pi .R.h+2pi R^2).
    • Trong đó:

      • R: bán kính đáy.
      • h: chiều cao (k/c giữa hai đáy = OO’).​

c) Công thức tính toán liên qua đến mặt cầu, khối cầu

  • Công thức tính thể tích khối cầu bán kính R: (V=frac{4}{3}pi .R^3).
  • Công thức tính diện tích mặt cầu bán kính R: (S = 4pi {R^2}.)
Xem thêm:  Hình học 12 Bài 1: Khái niệm về mặt tròn xoay | Tài liệu học tập và bài giảng online

Bài tập minh họa

 

[wpcc-script type=”text/javascript”]
[wpcc-script type=”text/javascript” src=”https://ss.yomedia.vn/js/yomedia-sdk.js?v=3″ id=”s-8701f44d62d54250b122748815c71b40″]

 

[wpcc-script type=”text/javascript”]
[wpcc-script type=”text/javascript” src=”https://ss.yomedia.vn/js/yomedia-sdk.js?v=3″ id=”s-15c47dbd541741bd976281bcda70b78c”]

Bài tập 1: 

Cho tam giác ABC vuông tại A có AC=3a, AB=4a. Cho tam giác này quay quanh đường thẳng BC, tính thể tích V của khối tròn xoay thu được.

Lời giải:

Kẻ đường cao AH của ∆ABC

Khi quay tam giác ABC quanh đường thẳng BC miền tam giác ABC sinh ra hai khối nón chung đáy có bán kính đáy là R = AH và chiều cao lần lượt là HB và HC.

Ta có: (frac{1}{{A{H^2}}} = frac{1}{{A{B^2}}} + frac{1}{{A{C^2}}} = frac{1}{{16{a^2}}} + frac{1}{{9{a^2}}} = frac{{25}}{{144{a^2}}}.)

Suy ra (A{H^2} = frac{{25}}{{144{a^2}}}.)

Mặt khác: (HB + HC = BC = sqrt {A{B^2} + A{C^2}} = 5a.)

Thể tích khối tròn xoay sinh ra là:

(V = {V_1} + {V_2} = frac{1}{3}pi A{H^2}.left( {HB + HC} right) = frac{1}{3}pi .frac{{144{a^2}}}{{25}}.5a = frac{{144pi {a^2}}}{{15}}.)

Xem thêm:  Hình học 12 Bài 3: Phương trình đường thẳng trong không gian | Tài liệu học tập và bài giảng online

Bài tập 2:

Cho một cái bể nước hình hộp chữ nhật có ba kích thước 2m, 3m, 2m lần lượt là chiều dài, chiều rộng, chiều cao của lòng trong đựng nước của bể. Hàng ngày nước ở trong bể được lấy ra bởi một cái gáo hình trụ có chiều cao là 5 cm bà bán kính đường tròn đáy là 4 cm. Trung bình một ngày được múc ra 170 gáo nước để sử dụng (Biết mỗi lần múc là múc đầy gáo). Hỏi đến ngày thứ bao nhiêu bể sẽ hết nước?

Lời giải:

Thể tích nước được đựng đầy trong hình bể là là thể tích của hình hộp chữ nhật: (V = 2.3.2 = 12left( {{m^3}} right).)

Thể tích nước đựng đầy trong một gáo là: ({V_g} = pi {4^2}.5 = 80pi left( {c{m^3}} right) = frac{pi }{{12500}}left( {{m^3}} right).)

Mội ngày bể được múc ra 170 gáo nước tức trong một ngày lượng được được lấy ra là: ({V_m} = 170.{V_g} = frac{{17}}{{1250}}pi left( {{m^3}} right)).

Xem thêm:  Toán 12 Bài 2: Tích phân | Tài liệu học tập và bài giảng online

Ta có: (frac{V}{{{V_m}}} = frac{{12}}{{frac{{17}}{{1250}}pi }} simeq 280,8616643)

Vậy đến ngày thứ 281 bể sẽ hết nước.

Bài tập 3: 

Một quả bóng bàn và một chiếc chén hình trụ có cùng chiều cao. Người ta đặt quả bóng lên chiếc chén thấy phần ở ngoài của quả bóng có chiều cao bằng (frac{3}{4}) chiều cao của nó. Tìm V1, V2 lần lượt là thể tích của quả bóng và chiếc chén. 

Lời giải:


 

Gọi chiều cao của chiếc chén hình trụ là 2h và bán kính đường tròn đáy của hình trụ là r.

Gọi O là tâm của quả bóng bàn, khi đó khoảng cách từ O đến mặt phẳng thiết diện bằng (frac{h}{2}) 

Bán kính đường tròn đáy hình trụ là (AI = sqrt {O{A^2} – O{I^2}} = frac{{hsqrt 3 }}{2}.)

Thể tích của quả bóng bàn là  ({V_1} = frac{4}{3}pi {R^3} = frac{4}{3}pi {h^3} = frac{{4pi {h^3}}}{3}.)

Thể tích của chiếc chén là: ({V_2} = pi {r^2}{h_c} = pi {left( {frac{{hsqrt 3 }}{2}} right)^2}.2h = frac{{3pi {h^3}}}{2}.) 

Xem thêm:  Toán 12 Bài 5: Phương trình mũ và phương trình lôgarit | Tài liệu học tập và bài giảng online

Bài tập 4:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, BC=2a. SA vuông góc (ABC) và (SA = 2asqrt 2). Tính thể tích V của khối cầu ngoại tiếp hình chóp đã cho.

Lời giải:

Gọi M là trung điểm của BC.

Do ABC là tam giác vuông cân tại A nên: (AB = AC = frac{{BC}}{{sqrt 2 }} = asqrt 2 ;AM = frac{{BC}}{2} = a)  

Dựng đường thẳng qua M song song với SA và cắt mặt phẳng trung trực của SA tại 0.

Khi đó O là tâm mặt cầu ngoại tiếp hình chóp.

Do ABCD là hình chữ nhật nên: (OM=AE=a sqrt 2.)

Mặc khác: (R = OA = sqrt {O{M^2} + M{A^2}} = sqrt {{{left( {asqrt 2 } right)}^2} + {a^2}} = asqrt 3)

Vậy thể tích khối cầu ngoại tiếp hình chóp là: (V = frac{4}{3}pi {R^3} = 4pi {a^3}sqrt 3 .)

Nội dung chương Mặt Nón, Mặt Trụ, Mặt Cầu xoay quanh việc tính thể tích, diện tích của các vật thể tròn xoay dạng nón, trụ và hình cầu, những vật thể quen thuộc và khá phổ biến trong đời sống. Nội dung bài ôn tập chương sẽ giúp các em Tổng hợp lại kiến thức đã học, rèn luyện kĩ năng giải bài tập, giúp nâng cao chất lượng, hiệu quả học tập.

Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Hình học 12 Ôn tập chương 2 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

.dsch li{list-style:none;}
.box-title-1 .b-title p,.box-title-1 h3.b-title{font-size:14px!important;}

  • Câu 1:

    Hình nón có thiết diện qua trục là tam giác đều. Tính độ dài đường cao h của hình nón.

    • A.(h = frac{a}{4}.) 
    • B.(h = frac{{sqrt 3 }}{4}a.)
    • C.(h = frac{a}{2}.)
    • D.(h = frac{{sqrt 3 }}{2}a.)
  • Câu 2:

     Cho tam giác ABC đều cạnh a, đường cao AH. Tính thể tích V của khối nón sinh ra khi cho tam giác ABC quay xung quanh trục AH.

    • A.(V = frac{{pi {a^3}sqrt 6 }}{{12}})
    • B.(V = frac{{pi {a^3}sqrt 3 }}{{12}})
    • C.(V = frac{{pi {a^3}sqrt 2 }}{{24}})
    • D.(V = frac{{pi {a^3}sqrt 3 }}{{24}})
  • Câu 3:

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ có đáy là hình vuông cạnh a và cạnh bên bằng 2a. Tính diện tích xung quanh (S_{xq}) của hình nón có đỉnh là tâm O của hình vuông A’B’C’D’ và đáy là hình tròn nội tiếp hình vuông ABCD.​

    • A.(S_{xq}=frac{{pi {a^2}sqrt {17} }}{4})  
    • B.({S_{xq}} = pi {a^2}) 
    • C.({S_{xq}} = frac{{pi {a^2}sqrt {17} }}{2})  
    • D.({S_{xq}} = pi {a^2}sqrt {17})

Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online 

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Hình học 12 Ôn tập chương 2 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Hình học 12 Cơ bản và Nâng cao.

Bài tập 2.47 trang 66 SBT Hình học 12

Bài tập 2.48 trang 66 SBT Hình học 12

Bài tập 2.49 trang 66 SBT Hình học 12

Bài tập 1 trang 63 SGK Hình học 12 NC

Xem thêm:  Toán 12 Bài 2: Tích phân | Tài liệu học tập và bài giảng online

Bài tập 2 trang 63 SGK Hình học 12 NC

Bài tập 3 trang 63 SGK Hình học 12 NC

Bài tập 4 trang 63 SGK Hình học 12 NC

Bài tập 5 trang 63 SGK Hình học 12 NC

Bài tập 6 trang 63 SGK Hình học 12 NC

Bài tập 1 trang 63 SGK Hình học 12 NC

Bài tập 2 trang 64 SGK Hình học 12 NC

Bài tập 3 trang 64 SGK Hình học 12 NC

5. Hỏi đáp Bài 3 Chương 2 Toán 12

Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em. 

Call Now Button