Toán 12 Bài 3: Lôgarit | Tài liệu học tập và bài giảng online

Bạn đang cần tìm Toán 12 Bài 3: Lôgarit | Tài liệu học tập và bài giảng online? Mọi ý kiến đóng góp với giasubachkhoa tại mục liên hệ để cộng đồng có thêm nhiều bài giảng và bài tập hay. Cảm ơn các bạn luôn ủng hộ chúng tôi.

Bài viết này về: Toán 12 Bài 3: Lôgarit | Tài liệu học tập và bài giảng online

Nội dung bài hạc sẽ giúp các em nắm được định nghĩa, các qui tắc tính lôgarit và công thức đổi cơ số. Thông qua các ví dụ minh họa các em sẽ biết vận dụng lôgarit để giải toán.

Contents

Xem thêm:  Toán 12 Bài 1: Nguyên hàm | Tài liệu học tập và bài giảng online

Tóm tắt lý thuyết

2.1. Khái niệm lôgarit

Cho hai số thực dương (a) và (b) với (ane1). Số (alpha) thỏa mãn (a^{alpha}=b) được gọi là lôgarit có số (a) của (b), kí hiệu (log_ab=alpha).

Vậy: (alpha = {log _a}b Leftrightarrow left{ begin{array}{l} 0 < a ne 1,b > 0\ {a^alpha } = b end{array} right.)

Ví dụ:

  • (log_2sqrt{2}=frac{1}{2}) vì (2^frac{1}{2}=sqrt{2})
  • (log_2frac{1}{8}=-3) vì (2^{-3}=frac{1}{8})
  • (log_23=1) vì (3^1=3)
  • (log_a1=0) vì (a^0=1)
  • (log_23=x) vì (2^x=3)

2.2. Các tính chất của lôgarit

a) Qui tắc tính lôgarit

Cho số thực (a) thỏa (0< aneq 1), ta có các tính chất sau:

  • Với (b>0): (a^{log_ab}=b)
  • Lôgarit của một tích:
    • Với (x_1,x_2>0): (log_a(x_1.x_2)=log_ax_1+log_ax_2)
    • Mở rộng với (x_1,x_2,…, x_n>0): (log_a(x_1.x_2….x_n)=log_ax_1+log_ax_2+…+log_ax_n)
  • Lôgarit của một thương
    • Với (x_1,x_2>0 : log_afrac{x_1}{x_2}=log_ax_1-log_ax_2)
    • Với (x> 0: log_afrac{1}{x}=-log_ax)
  • Lôgarit của một lũy thừa:
    • Với (b>0:) (log_ab^x=xlog_ab)
    • (forall x): (log_aa^x=x)
Xem thêm:  Hình học 12 Bài 2: Khối đa diện lồi và khối đa diện đều | Tài liệu học tập và bài giảng online

b) Công thức đổi cơ số:

Cho số thực (a) thỏa (0< aneq 1), ta có các tính chất sau:

  • Với (00:) (log_ab=frac{log_c b}{log_c a})

Lấy (0 < b ne 1), chọn (c=b) ta có: ({log _a}b = frac{1}{{{{log }_b}a}})

  • Với (alpha neq 0,b>0): (log_{a^alpha }b^beta =frac{beta }{alpha }log_ab)
  • Với (alpha neq 0, b>0:) (log_{a^alpha }b=frac{1}{alpha }log_ab)

c) So sánh hai lôgarit cùng cơ số

  • Nếu (a>1) thì (log_ax>log_ay Leftrightarrow x>y>0)
  • Nếu (0log_ay Leftrightarrow 0
  • Nếu (00)

2.3. Lôgarit thập phân và lôgarit tự nhiên

a) Lôgarit thập phân

Lôgarit cơ số 10 của số (x>0) được gọi là lôgarit thập phân của (x), kí hiệu là (log x) hoặc (lg x).

b) Lôgarit tự nhiên

Lôgarit cơ số (e) của số (a>0) được gọi là lôgarit tự nhiên (hay lôgarit Nê-pe) của số a, kí hiệu (ln a.)

Xem thêm:  Hình học 12 Bài 2: Phương trình mặt phẳng | Tài liệu học tập và bài giảng online

Bài tập minh họa

 

[wpcc-script type=”text/javascript”]
[wpcc-script type=”text/javascript” src=”https://ss.yomedia.vn/js/yomedia-sdk.js?v=3″ id=”s-8701f44d62d54250b122748815c71b40″]

 

[wpcc-script type=”text/javascript”]
[wpcc-script type=”text/javascript” src=”https://ss.yomedia.vn/js/yomedia-sdk.js?v=3″ id=”s-15c47dbd541741bd976281bcda70b78c”]

Ví dụ 1:

Tính giá trị các biểu thức sau:

a) (A = {log _9}15 + {log _9}18 – {log _9}10)

b) (B = {log _{36}}2 – frac{1}{2}{log _{frac{1}{6}}}3)

c) (C = {log _{frac{1}{4}}}left( {{{log }_3}4.{{log }_2}3} right))

Lời giải:

a) (A = {log _9}15 + {log _9}18 – {log _9}10 = {log _9}frac{{15.18}}{{10}} = {log _9}{3^3} = frac{1}{2}{log _3}{3^3} = frac{3}{2})

b) (B = {log _{36}}2 – frac{1}{2}{log _{frac{1}{6}}}3 = frac{1}{2}{log _6}2 + frac{1}{2}{log _6}3 = frac{1}{2}{log _6}2.3 = frac{1}{2})

c) (C = {log _{frac{1}{4}}}left( {{{log }_3}4.{{log }_2}3} right) = – {log _4}left( {{{log }_2}3.{{log }_3}4} right))

Xem thêm:  Toán 12 Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số | Tài liệu học tập và bài giảng online

(= – {log _4}left( {{{log }_2}4} right) = – frac{1}{2}{log _2}2 = – frac{1}{2})

Ví dụ 2: 

Tính các giá trị biểu thức sau (Giả sử các biểu thức đều xác định):

a) (A = {log _a}{a^3}sqrt a sqrt[5]{a})

b) (B={log _{frac{1}{a}}}frac{{asqrt[5]{{{a^3}}}sqrt[3]{{{a^2}}}}}{{sqrt a sqrt[4]{a}}})

Lời giải:

a) (A = {log _a}{a^3}sqrt a sqrt[5]{a} = {log _a}left( {{a^{3 + frac{1}{2} + frac{1}{5}}}} right) = 3 + frac{1}{2} + frac{1}{5} = frac{{37}}{{10}})

b) (B=lo{g_{frac{1}{a}}}frac{{asqrt[5]{{{a^3}}}sqrt[3]{{{a^2}}}}}{{sqrt a sqrt[4]{a}}} = – {log _a}left( {frac{{{a^{1 + frac{3}{5} + frac{2}{3}}}}}{{{a^{frac{1}{2} + frac{1}{4}}}}}} right) = – left( {frac{{34}}{{15}} – frac{3}{4}} right) = – frac{{91}}{{60}})

Ví dụ 3:

a) Tính (A= {log _3}135) biết ({log _2}5 = a;{log _2}3 = b)

b) Tính (B={log _{49}}32) biết ({log _2}14 = a)

Lời giải:

a) (A = {log _3}135 = {log _3}{5.3^3} = {log _3}5 + 3 = frac{{{{log }_2}5}}{{{{log }_2}3}} + 3 = frac{a}{b} + 3 = frac{{a + 3b}}{b})

Xem thêm:  Toán 12 Ôn tập chương 3 Nguyên hàm, Tích phân và Ứng dụng | Tài liệu học tập và bài giảng online

b) Ta có: ({log _2}14 = a Leftrightarrow 1 + {log _2}7 = a Rightarrow {log _2}7 = a – 1)

Vậy: ({log _{49}}32 = frac{{{{log }_2}{2^5}}}{{{{log }_2}{7^2}}} = frac{5}{{2{{log }_2}7}} = frac{5}{{2left( {a – 1} right)}})

Ví dụ 4:

Không dùng máy tính, hãy so sánh:

a) ({log _{0,4}}sqrt 2 ; vee ;{log _{0,2}}0,34)

b) ({log _{frac{5}{3}}}frac{3}{4}; vee ;{log _{frac{3}{4}}}frac{2}{5})

c) ({2^{{{log }_5}3}}; vee ;{3^{{{log }_5}frac{1}{2}}})

Lời giải:

a) Ta có: (left{ begin{array}{l} sqrt 2 > 1 Rightarrow {log _{0,4}}sqrt 2 < {log _{0,4}}1 = 0\ 0,3 < 1 Rightarrow {log _{0,2}}0,3 > {log _{0,2}}1 = 0 end{array} right. Rightarrow {log _{0,2}}0,3 > {log _{0,4}}sqrt 2)

b) Ta có: (left{ begin{array}{l} frac{5}{3} > 1;0 < frac{3}{4} < 1 Rightarrow {log _{frac{5}{3}}}frac{3}{4} < {log _{frac{5}{3}}}1 = 0\ 0 < frac{3}{4} < 1;0 < frac{2}{5} < 1 Rightarrow {log _{frac{3}{4}}}frac{2}{5} > {log _{frac{3}{4}}}1 = 0 end{array} right. Rightarrow {log _{frac{3}{4}}}frac{2}{5} > {log _{frac{5}{3}}}frac{3}{4})

Xem thêm:  Hình học 12 Bài 2: Mặt cầu | Tài liệu học tập và bài giảng online

c) Ta có: (left{ begin{array}{l} {log _5}3 > {log _5}1 Rightarrow {2^{{{log }_5}3}} > {2^{{{log }_5}1}} = {2^0} = 1\ {log _5}frac{1}{2} < {log _5}1 Rightarrow {3^{{{log }_5}frac{1}{2}}} < {3^{{{log }_5}1}} = {3^0} = 1 end{array} right. Rightarrow {log _5}3 > {log _5}frac{1}{2})

 

Nội dung bài hạc sẽ giúp các em nắm được định nghĩa, các qui tắc tính lôgarit và công thức đổi cơ số. Thông qua các ví dụ minh họa các em sẽ biết vận dụng lôgarit để giải toán.

4.1 Trắc nghiệm về lôgarit

Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 12 Chương 2 Bài 3 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

Xem thêm:  Toán 12 Ôn tập cuối năm phần Giải tích | Tài liệu học tập và bài giảng online

.dsch li{list-style:none;}
.box-title-1 .b-title p,.box-title-1 h3.b-title{font-size:14px!important;}

  • Câu 1:

    Rút gọn biểu thức 

    (A = {log _a}frac{{{a^2}.sqrt[3]{{{a^2}}}.a.sqrt[5]{{{a^4}}}}}{{sqrt[3]{a}}}) với (a > 0;,,a ne 1).

    • A.(A = frac{{62}}{5})
    • B.(A = frac{{16}}{5})
    • C.(A = frac{{22}}{5})
    • D.(A = frac{{67}}{5})
  • Câu 2:

    Tính giá trị của biểu thức (P = {log _a}asqrt[3]{{asqrt[3]{{asqrt a }}}}) với (0 < a ne 1.)

    • A.(P = frac{3}{{10}})
    • B.(P = 4)​
    • C.(P = frac{1}{2})​
    • D.(P = frac{1}{4})​
  • Câu 3:

    Đặt  (a = {log _2}3,b = {log _5}3). Hãy biểu diễn ({log _6}45)  theo a và b.

    • A.({log _6}45 = frac{{2{a^2} – 2ab}}{{ab}})
    • B.({log _6}45 = frac{{2{a^2} – 2ab}}{{ab + b}})
    • C.({log _6}45 = frac{{a + 2ab}}{{ab + b}})
    • D.({log _6}45 = frac{{a + 2ab}}{{2ab + b}})

Câu 4- Câu 10: Xem thêm phần trắc nghiệm để làm thử Online 

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 12 Chương 2 Bài 3 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 12 Cơ bản và Nâng cao.

Bài tập 35 trang 92 SGK Toán 12 NC

Bài tập 36 trang 93 SGK Toán 12 NC

Bài tập 37 trang 93 SGK Toán 12 NC

Bài tập 38 trang 93 SGK Toán 12 NC

Bài tập 39 trang 93 SGK Toán 12 NC

Xem thêm:  Toán 12 Ôn tập chương 4 Số phức | Tài liệu học tập và bài giảng online

Bài tập 40 trang 93 SGK Toán 12 NC

Bài tập 41 trang 93 SGK Toán 12 NC

Bài tập 42 trang 97 SGK Toán 12 NC

Bài tập 43 trang 97 SGK Toán 12 NC

Bài tập 44 trang 97 SGK Toán 12 NC

Bài tập 45 trang 97 SGK Toán 12 NC

Bài tập 46 trang 97 SGK Toán 12 NC

5. Hỏi đáp Bài 3 Chương 2 Toán 12

Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em. 

Call Now Button